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Icosahedral symmetry breaking: C60 to C84, C108

and to related nanotubes
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This paper completes the series of three independent articles [Bodner et al.

(2013). Acta Cryst. A69, 583–591, (2014), PLOS ONE, 10.1371/journal.

pone.0084079] describing the breaking of icosahedral symmetry to subgroups

generated by reflections in three-dimensional Euclidean space R
3 as a

mechanism of generating higher fullerenes from C60. The icosahedral symmetry

of C60 can be seen as the junction of 17 orbits of a symmetric subgroup of order 4

of the icosahedral group of order 120. This subgroup is noted by A1 � A1,

because it is isomorphic to the Weyl group of the semi-simple Lie algebra A1 �

A1. Thirteen of the A1�A1 orbits are rectangles and four are line segments. The

orbits form a stack of parallel layers centered on the axis of C60 passing through

the centers of two opposite edges between two hexagons on the surface of C60.

These two edges are the only two line segment layers to appear on the surface

shell. Among the 24 convex polytopes with shell formed by hexagons and 12

pentagons, having 84 vertices [Fowler & Manolopoulos (1992). Nature

(London), 355, 428–430; Fowler & Manolopoulos (2007). An Atlas of

Fullerenes. Dover Publications Inc.; Zhang et al. (1993). J. Chem. Phys. 98,

3095–3102], there are only two that can be identified with breaking of the H3

symmetry to A1 � A1. The remaining ones are just convex shells formed by

regular hexagons and 12 pentagons without the involvement of the icosahedral

symmetry.

1. Introduction

In this paper, icosahedral symmetry and its implementation in

the case of the fullerene C60 (see Fig. 1) is only briefly

described, as its detailed exposition was presented in the two

previous articles of the series (Bodner et al., 2013, 2014)

together with all notations.

The icosahedral group, denoted here by H3, is of order 120.

It is generated by three reflections, r1, r2, r3, in the real

Euclidean space R3. The simple roots �1, �2 and �3 of H3 are

the normal vectors to the three reflection mirrors that meet at

the origin and that define the icosahedral symmetry. They

form the �-basis of the Euclidean space R3. A concise way to

provide relative angles and a conventional choice of the

lengths of the normals (Champagne et al., 1995) is to define the

matrix C of their scalar products h�j; �ki. In the case of H3, one

has

CðH3Þ ¼ ðh�j; �kiÞ ¼

2 �1 0

�1 2 ��
0 �� 2

0
@

1
A; � ¼ 1

2 ð1þ 51=2Þ:

The !-basis, reciprocal to �, is defined by
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h�j; !ki ¼ �jk; j; k ¼ 1; 2; 3: ð1Þ

Specifically we get the relations between the basis vectors,

�1 ¼ 2!1 � !2 !1 ¼ ð1þ
1
2 �Þ�1 þ ð1þ �Þ�2 þ ð

1
2þ �Þ�3

�2 ¼ �!1 þ 2!2 � �!3 !2 ¼ ð1þ �Þ�1 þ ð2þ 2�Þ�2 þ ð1þ 2�Þ�3

�3 ¼ ��!2 þ 2!3 !3 ¼ ð
1
2þ �Þ�1 þ ð1þ 2�Þ�2 þ ð

3
2þ

3
2 �Þ�3:

ð2Þ

In this paper, in addition to the �- and !-bases, it is convenient

to use the mixed basis f!1; �2; !3g because, according to

equation (1), �2 is orthogonal to the plane spanned by !1 and

!3.

Suppose ða; b; cÞ is given relative to the basis f!1; !2; !3g. In

order to transform it to the basis f!1; �2; !3g, one proceeds as

follows:

ða; b; cÞ

1 1þ � 0

0 2þ 2� 0

0 1þ 2� 1

0
@

1
A ¼ ða; aþ 2bþ cþ ðaþ 2bþ 2cÞ�; cÞ:

ð3Þ

Thus one gets the following specific transformations:

ð1; 1; 0Þ�!ð1; 3þ 3�; 0Þ;

ð0;�1� 2�; 3�Þ�!ð0;�1� �;�3�Þ; . . .

The subgroup of interest to us here can be set up in H3 in

many equivalent ways. One of them is particularly transparent:

two of the simple roots of H3 that are orthogonal to each other

can be adopted as the simple roots of A1 � A1. Putting �1 ¼ �1

and �2 ¼ �3 we have

CðA1 � A1Þ ¼ ðh�p; �qiÞ ¼
2 0

0 2

� �
; p; q ¼ 1; 2:

In the previous work we first considered the symmetry H3

broken to the symmetry group H2 that is generated by

reflections r2, r3 (Bodner et al., 2013), and second we consid-

ered the breaking of the H3 symmetry to A2, generated by the

reflections r1 and r2 (Bodner et al., 2014). In the present paper

the unbroken symmetry group is generated by the reflections

r1 and r3. It is the Weyl group of the semi-simple Lie group

SUð2Þ � SUð2Þ, or equivalently, of its semi-simple Lie algebra

A1 � A1. The order of the group is 4. Hence its orbits consist

of four, two or one point(s). It is convenient to write the orbit

points in the !-basis reciprocal to the �-basis of simple roots.

Reduction of the points of any orbit of H3, in particular the

60 points/vertices of the polytope C60, is found as in Bodner et

al. [2013, equation (11)]. In the list the vertices are given in the

basis f!1; !2; !3g. Only the dominant points that identify the

orbits of the appropriate subgroup are pointed out.

2. The A1 ��� A1 orbits of vertices of C60

There are two images of C60 in Fig. 1. The first one is done

traditionally by showing the edges of the surface of the

polytope and their intersections (vertices). The second image

shows only the A1 � A1 orbits. Since the polytope is oriented

vertically along the �2 axis, the A1 � A1 orbits appear as

segments, thus forming the ‘stack of pancakes’, with each

A1 � A1 orbit being just one ‘pancake’.

The A1 � A1-orbit structure of C60 becomes visible once the

dominant points of each orbit are identified, which is simpli-

fied by working in the !-basis of R3. Indeed, it suffices to find

among the 60 vertices those that have non-negative first and

third coordinates in the !-basis, indicating a non-action of the

reflections r1 and r3 on the corresponding vertex/point. Each

A1 � A1 orbit has precisely one dominant point; therefore it is

specified by it.

The 60 vertices of C60 are given below in pairs that differ by

an overall sign. If the sign of the first and third coordinate of a

vertex coincide, one of the pair is a dominant point of an

A1 � A1 orbit. Boxes mark all such pairs in equation (4). If

both the first and the third coordinates are positive, the orbit

contains four points. If one of the coordinates is 0, the orbit is a

segment with two vertices at its extremes. The following 60

vertices of C60 are written in the basis f!1; �2; !3g. The

formula (3) applied to the 60 vertices in the !-basis of Bodner

et al. [2013, equation (11)] results in the following points in the

basis f!1; �2; !3g:

Thus there are 13 rectangular orbits,
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Figure 1
Two views of the polytope C60. In one surface edges are shown. In the
other only the orbits of A1 � A1 are drawn as segments orthogonal to the
axis of the polytope which is the simple root �2. The last column of
numbers contains coordinates of each A1 � A1 orbit in the direction
of �2.



and four orbits of two points,

In order to find all the points of an A1 � A1 orbit, it suffices

to apply to the dominant points the transformation given in

equation (5) and to the points given in equation (6) the

reflections r1 and r3 in every way that yields a new point of the

orbit.

The four orbits of two points.

ð1; 1; 0Þ; r1ð1; 1; 0Þ ¼ ð�1; 2; 0Þ

ð0;�1� 2�; 3�Þ; r3ð0;�1� 2�; 3�Þ ¼ ð0; 2þ �;�3�Þ
ð1;�2; 0Þ; r1ð1;�2; 0Þ ¼ ð�1;�1; 0Þ

ð0;�2� �; 3�Þ; r3ð0;�2� �; 3�Þ ¼ ð0; 1þ 2�;�3�Þ

Let us find the surface points of C60 with the direction of the

axis of �2 which is orthogonal to the plane spanned by !1 and

!3. Clearly the points ð1; 1; 0Þ and r1ð1; 1; 0Þ ¼ ð�1; 2; 0Þ are

the end points of an edge on the top of C60 oriented as in Fig.

1. We have �2 � ð1; 1; 0Þ þ ð�1; 2; 0Þ ¼ ð0; 3; 0Þ.

Let us view C60 as the stack of A1 � A1 pancakes. For that

we look at the vertices of C60 in the direction parallel to the

plane spanned by !1 and !3. Then each A1 � A1 orbit appears

as a segment. If in addition no edges on the surface of C60 are

shown, we have the ‘pancake stack’ of C60 that is oriented in

the direction orthogonal to the plane of !1 and !3, or

equivalently, to vector �2 (see Fig. 1).

Both images of C60 in Fig. 1 display exact icosahedral

symmetry, so that no symmetry breaking has occurred.

3. Symmetry breaking C60 ! A1 ��� A1

In the previous two papers of this series, related cases were

considered of breaking the icosahedral symmetry of C60 ! H2

(Bodner et al., 2013), and the symmetry breaking of C60 to A2

(Bodner et al., 2014). These cases can also be described as

choosing a subgroup generated by selecting two of the three

reflections r1, r2, r3 generating H3.

3.1. C84 from the H3 ! A1 ��� A1 symmetry breaking

The axis along which the symmetry breaking takes place in

this paper is that of �2. That is the reflections r1 and r3 remain

as symmetry operations, while r2 loses this role. The orbits of

A1 � A1 remain intact because they are in planes spanned by

!1 and !3. In particular, the pancakes of Fig. 1 remain

unchanged.

Symmetry breaking C60�!A1 � A1 occurs in two steps:

(i) New orbits of A1 � A1 are inserted into the C60 pancake

stack.

(ii) Existing orbits of A1 � A1 are displaced along the �2

direction.

Both steps are subject to the additional constraint that the

surface of the new polytope must be closed convex and formed

by regular hexagons and 12 regular pentagons.

Both symmetry-breaking steps can be repeated any desired

number of times.

Fig. 2 shows which edges of the polytope have to be

removed before the insertion of new orbits is undertaken.

3.2. Inserted spirals

It remains to describe the orbits of A1 � A1 that should be

inserted into the stack of C60 in Fig. 1 so that it becomes the

stack of C84 in Fig. 3.

This cannot be achieved here by insertion of one or several

rings of hexagons into a surface of C60 as was the case (Bodner

et al., 2013, 2014). Here symmetry breaking is taking place

through the insertion of one or several spiral loops of hexa-

gons. Since a spiral can be left- or right-hand oriented in R3,

there are two versions for each new polytope. In Fig. 4 both

versions of C84 are shown.
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Figure 2
Coloured edges of C60 are to be removed before the insertion of
additional spiral surface belts is undertaken. Removal of the edges also
destroys four surface pentagons. They get replaced by four pentagons of
the inserted spirals (Fig. 5).

Figure 3
Pancake structure of C84.



A flattened image of a one-loop spiral of eight hexagons is

shown in Fig. 5. The pentagons at its extremes are either

incorporated into a continuation of the loop, or are part of the

original polytope before the insertion.

Left and right oriented spirals of polytopes C108;C132; . . .
and nanotubes arise in a similar way as in the case of C84. Each

time the additional two rings of six hexagons (24 new vertices)

can be inserted into the middle of the structure (see Fig. 6).

The greater the number of pairs of hexagonal rings inserted,

the longer the resulting nanotube that is built.

4. Concluding remarks

Breaking of the icosahedral symmetry of C60 to the subgroup

A1 � A1 is the most complicated of the three possible methods

of constructing nanotubes through the repeated application of

the symmetry-breaking mechanism. Indeed, in Bodner et al.

(2013, 2014) an appropriate number of rings of hexagons and

pentagons was inserted between the upper and lower halves of

the C60 shell. In the present case a number of complete loops

of a spiral of hexagons needs to be inserted between the upper

and lower parts of C60.

One may be interested in constructing open-ended nano-

tubes rather than nanotubes that are closed on both ends; new

versatile possibilities occur. Thus one can start from a single

layer of graphene, which is the sheet of hexagons in R2. Then

cutting a strip of constant width from the graphene, one can

wrap it on a surface of a cylinder of an appropriate radius. It is

important that both sides of the strip pass through identical

sets of graphene points to have them matched seamlessly on

the surface of the cylinder. Such a requirement still leaves an

infinite (discrete) number of possible radii of the cylinder. The

direction of the strip is dictated by the direction of the roots of

the reflection groups.

Fullerenes and related nanotubes are sometimes used as

carriers for other molecules in their interior. Symmetry alone

admits several possibilities of defining special positions within

fullerenes. A systematic description of such cases would be of

interest.

An independent, interesting viewpoint on the structure of

the fullerenes is found in Kostant (1994, 1995).
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Figure 5
Flattened spiral that, added to C60, transforms it to C84. The three types of
dashed lines indicate which edges are to be identified.

Figure 6
Left versions of the polytopes C108 and C132, where multiple spiral belts
(see Fig. 5) were added.

Figure 4
Left and right versions of C84 polytopes. The two versions differ by
orientation of the inserted spiral belt with respect to the direction of �2.
Their pancake stacks coincide. Black circles indicate the 24 vertices that
were added to C60.
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